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ABSTRACT 
The dot diffusion method for digital halftoning has the 

advantage of parallelism unlike the error diffusion method. 
However, image quality offered by error diffusion is still re- 
garded as superior to other known methods. In a recent pa- 
per we showed how the dot diffusion method can be improved 
by optimization of the so-called class matrix. In this paper 
we first review the dot diffusion algorithm and the optimiza- 
tion of the class matrix. A method for inverse halftoning 
of dot diffused images is then proposed. The method uses 
wavelet decomposition to eliminate the halftoning noise and 
does not make use of the knowledge of the class matrix. 

1    INTRODUCTION 

Digital halftoning is the rendition of continuous-tone pictures 
on displays that are capable of producing only two levels. 
There are many good methods for digital halftoning: ordered 
dither [3], error diffusion [4], neural-net based methods [2], 
and more recently direct binary search (DBS) [10]. Ordered 
dithering is a thresholding of the continuous-tone image with 
a spatially periodic screen [3] . In error diffusion [4], the error 
is 'diffused' to the unprocessed neighbor points. 

Ordered dithering is a parallel method, requiring only 
pointwise comparisons. But the resulting halftones suffer 
from periodic patterns. On the other hand error diffused 
halftones do not suffer from periodicity and offer blue noise 
characteristic [11] which is found to be desirable. The main 
drawback is that error diffusion is inherently serial, e.g., to 
get the halftoned value of the last pixel, all of the remaining 
points should be processed. Also there occur worm-like pat- 
terns in near mid-gray regions and resulting halftones have 
ghosting problem [5]. Mitsa and Parker have optimized or- 
dered dither matrix [9] for large size like 256x256 to get the 
blue noise effect. This is a compromise between parallelism 
and image quality. 

The dot diffusion method for halftoning, introduced by 
Knuth [5], is an attractive method which attempts to retain 
the good features of error diffusion while offering substantial 
parallelism. However, surprisingly, not much work has been 
done on optimization of the so-called class matrix. In [8] we 
showed that the class matrix can be optimized by taking into 
account the properties of human visual system (HVS). The 
resulting halftones are of the same quality as for error diffu- 
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sion. Since dot diffusion also offers increased parallelism, it 
now appears to be an attractive alternative to error diffusion. 

In this paper, we first review the improved dot diffusion 
algorithm of [8], and then address the inverse halftoning 
problem. Inverse halftoning has a wide range of applications 
such as compression, printed image processing, scaling, en- 
hancement, etc. In these applications, operations can not be 
done on the halftone image directly, and inverse halftoning 
is mandatory. A simple yet efficient algorithm for inverse 
halftoning of dot diffused images is proposed and compared 
to other methods. 

2    REVIEW OF DOT DIFFUSION 

The dot diffusion method for halftoning has only one de- 
sign parameter, called the class matrix C. It determines 
the order in which the pixels are halftoned. Thus, the pixel 
positions (ni,ri2) of an image are divided into IJ classes 
according to (ni mod /, n? mod J) where I and J are con- 
stant integers. For example, Knuth used a class matrix of 
size J = J = 8, and there were 64 class numbers in that class 
matrix [5]. Let x(ni, n^) be the contone image with pixel val- 
ues in the normalized range [0,1]. Starting from class k — 1, 
we process the pixels for increasing values of k. For a fixed 
fc, we take all pixel locations (711,712) belonging to class k 
and define the halftone pixels to be 

. .      J 1    if x(ni,n,2) > 0.5 
«h(ni,na) = |0   ifx(ni!n2)<0.5 

We also define the error e(ni,ri2) = x(rci,ri2) — Xh(ni,ri2). 
We then look at the eight neighbors of (ni,ri2) and replace 
each contone pixel with an adjusted version for those neigh- 
bors which have a higher class number (i.e., those neighbors 
that have not been halftoned yet). To be specific, neighbors 
of x(i j) with higher class numbers are replaced with 

x(i,j) + 2e(ni,n2)/w    (for orthogonal neighbors)   (1(a)) 

x(i,j) + e(ni,ri2)/w    (for diagonal neighbors)       (1(6)) 

where w is such that the sum of errors added to all the 
neighbors is exactly e(ni, 712). The extra factor of two for or- 
thogonal neighbors (i.e., vertically and horizontally adjacent 
neighbors) is because vertically or horizontally oriented error 
patterns are more perceptible than diagonal patterns. 

The contone pixels x(ni,ri2) which have the next class 
number k + 1 are then similarly processed. The pixel values 
x(ni,ri2) are of course not the original contone values but 
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the adjusted values according to earlier diffusion steps (1). 
When the algorithm terminates, the signal x/, (711,712) is the 
desired halftone. In IJ steps the algorithm will complete the 
halftoning process. 

Usually an image is enhanced [5] before dot diffusion 
is applied. For this the continuous image pixels C(i,j) 
are replaced by C'(i,j) = cV<i)-jfW) where C(i,j) = 

EU! ££1 C(i,j)/9. If a = 0.9 then 

c'(i,j) = 8C(i,j)+C(i,j)- £ C(u,t7)- 
0<(u-i)2+(«-j')2<3 

This algorithm is completely parallel requiring 9 additions 
per pixel, and no multiplications. 

3    OPTIMIZATION OF CLASS MATRIX 

Knuth introduced the notion of barons and near barons in 
the selection of his class matrix. A baron has only low-class 
neighbors, and a near-baron has one high class neighbor. 
The quantization error at a baron cannot be distributed to 
neighbors, and the error at a near baron can be distributed 
to only one neighbor. Knuth's idea was that the number 
of barons and near barons should therefore be minimized. 
He exhibited a class matrix with two barons and two near 
barons. The quality of the resulting halftones are still infe- 
rior to error diffusion because of periodic patterns similar to 
ordered dither methods (see Fig. 6). In our experience, the 
baron/near-baron criterion does not appear to be the right 
choice for optimization as explained in [8]. In Sec. 3.1 we in- 
troduce a different optimization criterion based on the HVS, 
and show that the image quality is significantly improved, 
though the class matrix does not minimize barons. 

3.1    Objective Function Based on Blue Noise 

It has been observed in the past that the error in a good 
halftone should have the blue noise property [11]. This 
means that the noise energy should mostly be in the high 
frequency region where it is known to be less perceptible. We 
showed in [8] how to incorporate blue noise characteristics 
into the class matrix optimization: 

Let Xh{ni,n2) denote the halftoned version of a constant 
gray image x (n 1,712) = g where 0 < g < 1.Typically, the 
dark pixels are spatially distributed with a certain aver- 
age frequency fg called the principal frequency, which 
increases with gray level g. Since noise energy at a signifi- 
cantly higher spatial frequency than fg is not perceivable, we 
can optimize a halftoning method for a particular gray level 
g by forcing the noise spectrum to be concentrated above fg. 

Calculating the noise spectrum. In order to implement the 
optimization, we first need to compute the noise spectrum. 
The halftone pattern x/,(ni, 712) for the gray level x(ni, 712) = 
g has the error e(ni,ri2) = g — Xh(111,712), which is an N x N 
image. As explained in [8], a radially averaged power 
spectrum PT(kT) for this error is calculated, where kr is a 
positive integer called the radial frequency. The class matrix 
in the dot diffusion method should be optimized such that 
this radial spectrum is appropriately shaped for a well-chosen 
fixed gray level g. In terms of the radial frequency variable 
kr, the principal frequency for the halftone of gray level g is 
given by 

Jg = Kmax yy 

where kmax is the maximum value of kT. In fact, for g > 
0.5, since black pixels are more in number, the halftone is 
perceived as a distribution of white dots and we have to take 

fg = fcmaxv7! — 9- 
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Figure 1: A Typical 
Desired Radial Spec- 
trum Characteristics 
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Figure 2: The Weight 
Function used in the Op- 
timization 

The aim of the optimization is to shape Pr(kr) by choice 
of the class matrix C so that most of its energy is moved 
to the region kT > fg (as demonstrated in Fig. 1). We 
therefore define the cost function 

*(C,s) -r Jo 
Pr{kr)w(kr)dkr 

The weight function was chosen to be w(kr) = (kr — /9)
2 

for 0 < kr < fg and zero outside [8]. In the optimization 
the integral was replaced with a discrete sum. The choice 
of the class matrix that minimizes this sum was performed 
using the pairwise exchange algorithm [8], which was 
originally proposed in digital filter literature for a different 
application [1]. The gist of this algorithm is as follows: 

1) Randomly order the numbers in the class matrix. 

2) List all possible exchanges of class numbers. 

3) If an exchange does not reduce cost, restore the pair to 
original positions and proceed to the next pair. 

4) If an exchange does reduce cost, keep it and restart the 
enumeration from the beginning. 

5) Stop searching if no further exchanges reduce cost. 

6) Repeat the above steps a fixed number of times and keep 
the best of the class matrix. 

Choice of gray level. Since the algorithm can be applied 
only to a given gray level, the gray level should be chosen 
wisely to get good halftones for other gray levels also. For 
most natural images, the best gray level was experimentally 
found to be g = 0.0625 as explained in [8]. 

4    INVERSE HALFTONING 

Inverse halftoning is the reconstruction of a continuous tone 
image from its halftoned version. The basic aim in inverse 
halftoning is to separate the halftoning noise from the orig- 
inal image. In good halftoning algorithms, the noise intro- 
duced by halftoning is concentrated in the high frequencies. 
Simple low pass filtering can remove the high frequency noise 



but it also removes the edge information. Thus the edge in- 
formation should be separated from the halftoning noise. 

Inverse halftoning using wavelets was considered in [12] 
and [6]. The algorithm in [12] is tailored for error diffusion, 
which has different characteristics than dot diffusion. If the 
method in [12] is used, the result is not good. This can be 
seen from Fig. 8 which is the result of inverse halftoning 
of dot diffused Lena by using the method in [12]. The im- 
age suffers from periodic patterns, which is essentially low 
frequency noise. 

In the new method, the specific properties of the dot dif- 
fusion algorithm are taken into account. The image is en- 
hanced before dot diffusion, hence in the inverse halftoning, 
the dot diffused image should be deenhanced using the in- 
verse filter of Fmh(zi,z2) = 10-(zi + l + z^1)(z2 + l + z2

l). 
Note that Fenh(eiwi,e>W2) > 0 for all 0 < wi,w2 < v. 

We use the wavelet tree built from the analysis block 
shown in Fig. 3. An image C{x,y) is decomposed into 
L(x,y), H(x,y), and V(x,y) using the undecimated wavelet 
transform. At scale 2*+1, (which will be described below), 
the filtering operations are as follows : 

L(wi,w2) = F(2iwi)F(2iw2)C(w1,w2), 

H(wuw2) = G{2iwi)F{2iw2)C{wuw2), 

V(tui,u>2) = F(2iw1)G(2iw2)C{wuw2), 
where G and F are derived from quadratic spline wavelets 
and they are tabulated with the synthesis filters in Table 1, 
in [7] (F is H in the latter Table). The choice of filters 
given in [7] detect edges at different scales if they are used 
in the wavelet tree shown in Fig. 4 with scales 2°,21,22,23 

from left to right. For example Hi(x,y) and Vi(x,y) repre- 
sent the horizontal edges, and vertical edges of Li_i(x,y) at 
scale 2*_1 respectively, and Li(x,y) is the low pass version 
of Li-i{x,y). 

-»   L(x.y) 

C(x.y) H(x.y) 

V(x,y) 

Figure 3: Wavelet decomposition of an image 

H,(x,y)     H2(x,y)     H3(x,y)     H4(x,y) 

Lo(x,y) L!(x,y)    LjCx.y) L}(x,y) 

V,(x,y)     V2(x,y)     V3(x,y)     V4(x,y) 

Figure 4: Wavelet Tree used in Inverse Halftoning 

Let us denote the ith level low pass image, vertical edge 
image and horizontal map image as Li(x,y), Vi(x,y), and 
Hi(x,y) respectively.  The 4-level wavelet decomposition is 

then applied to the deenhanced halftone image, L0(x,y). 
Then for each pixel location (x,y), the following is done: 

1) Apply a symmetric FIR Gaussian filter,  fg(n,m) to 

Vi(x,y), and iJi(x,y). (fs(n,m) = ce ~^~ for -3 < 
n, m < 3, and c is chosen such that the DC gain of the fil- 
ter is unity). The first level edge maps contain mostly the 
halftoning noise, thus low pass filtering these images reduces 
the blue noise without harming the edges too much. 

2) Let E23{x,y) = V2(x,y)V3(x,y) + H2(x,y)H3(x,y). 

if Eh3 (x,y)< Tx then make V2 (x, y) = 0 and H2 (x, y) - 0. 

3) Let E3i(x,y) = V3(x,y)V4(x,y) + H3{x,y)H4(x,y). 

if £34(3;, y) < T2 then make V3(x, y) = 0 and H3(x,y) = 0. 

Steps 2 and 3 are the denoising steps in the algorithm. In 
order to discriminate the edges from the halftoning noise, we 
have to locate the edges. For this, the above steps perform 
a cross correlation between the edges at different scales. If 
there is an horizontal edge at scale i at (x,y) then Hi(x,y) 
and Hi+i(x,y) will be of the same sign [7]. The same is 
also true for vertical edges. Combining the horizontal and 
vertical edge correlations gives better results in detecting the 
diagonal edges. 

4) The above steps have modified the subband signals Li, 
Hi and VJ in certain ways. We now use the inverse filter 
bank (synthesis bank) corresponding to Fig. 4, and obtain 
a reconstructed version L0(x,y). The image L0(x,y) is the 
desired inverse halftone image. 

5 EXPERIMENTAL RESULTS 

The 512 x 512 continuous tone peppers image is halftoned 
by using Knuth's class matrix (Fig 6), and by the optimized 
class matrix (Fig 7). It is clear that the new method is 
superior to unoptimized dot diffusion method. In fact, the 
new method offers a quality comparable to FS error diffusion 
method (Fig. 5). Error diffused images suffer from worm- 
like patterns which are not in the original image, whereas 
dot diffused halftones do not contain these artifacts. Notice 
that the artificial periodic patterns in Fig. 6 are absent in 
Fig.   5 and in the new method (Fig.   7). 

In inverse halftoning, dot diffusion has an advantage, even 
the simple unenhanced image is a quite reasonable inverse 
halftone (psnr=:26.62dB for Lena image). The unenhanced 
image is further processed as described in Sec. 4. The pa- 
rameters used in the method are found experimentally. The 
variance of the Gaussian filter, a1 is chosen to be 0.5 and 
the thresholds are chosen to be Tx = 300 and T2 = 20. The 
results are shown in Fig. 10 (psnr=30.58dB) and in Fig. 9 
(psnr=28.61dB). 2 

6 CONCLUSION 

Even though dot diffusion offers more parallelism than error 
diffusion, it has not received much attention. This is partly 
because the noise characteristics of error diffusion method 
are generally regarded as superior. We observed that by op- 
timizing the class matrix for blue noise at a fixed gray level, 
the results of dot diffusion can be made at least as pleasing 

2 The     inverse     halftone     images     can     be     found     at 
htttp://www.systems.caltech.edu/mese/halftone/ 



as that of error diffusion. The algorithm terminates in at 
most 64 steps for 8 x 8 class matrix compared to N2 steps 
needed for error diffusion algorithm. Moreover, as noticed 
in [8], the algorithm can in fact be terminated in about 50 
steps. The conclusion is that Knuth's dot diffusion method 
with a carefully optimized class matrix is very promising; 
the image quality is comparable to error diffusion, and the 
implementation offers more parallelism than error diffusion. 
We also developed a wavelet-based inverse halftoning algo- 
rithm which works very well, even though the class matrix 
information is not used. 
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Figure 5: FS Error Diffusion 

Figure 6: Dot Diffusion with Knuth's Class Matrix 

Table 1: Class Matrix C for the new method 
59 12 46 60 28 14 32 3 
21 25 44 11 58 45 43 30 
24 20 13 42 33 5 54 8 
64 52 55 40 63 47 7 18 
35 57 9 15 50 48 4 36 
41 17 6 61 22 49 62 34 
2 53 19 56 39 23 26 51 
16 37 1 31 29 27 38 10 



Figure 7: Dot Diffusion with the new Class Matrix Figure 9: Inverse Halftoned Lena Using the new method 

Figure 8:  Result of Inverse Halftoning using previous 
method 

Figure 10:   Inverse Halftoned Peppers Using the new 
method 


